Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Medicine (Baltimore) ; 102(23): e33904, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20234892

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers (ARBs) have been hypothesized to benefit patients with COVID-19 via the inhibition of viral entry and other mechanisms. We conducted an individual participant data (IPD) meta-analysis assessing the effect of starting the ARB losartan in recently hospitalized COVID-19 patients. METHODS: We searched ClinicalTrials.gov in January 2021 for U.S./Canada-based trials where an angiotensin-converting enzyme inhibitors/ARB was a treatment arm, targeted outcomes could be extrapolated, and data sharing was allowed. Our primary outcome was a 7-point COVID-19 ordinal score measured 13 to 16 days post-enrollment. We analyzed data by fitting multilevel Bayesian ordinal regression models and standardizing the resulting predictions. RESULTS: 325 participants (156 losartan vs 169 control) from 4 studies contributed IPD. Three were randomized trials; one used non-randomized concurrent and historical controls. Baseline covariates were reasonably balanced for the randomized trials. All studies evaluated losartan. We found equivocal evidence of a difference in ordinal scores 13-16 days post-enrollment (model-standardized odds ratio [OR] 1.10, 95% credible interval [CrI] 0.76-1.71; adjusted OR 1.15, 95% CrI 0.15-3.59) and no compelling evidence of treatment effect heterogeneity among prespecified subgroups. Losartan had worse effects for those taking corticosteroids at baseline after adjusting for covariates (ratio of adjusted ORs 0.29, 95% CrI 0.08-0.99). Hypotension serious adverse event rates were numerically higher with losartan. CONCLUSIONS: In this IPD meta-analysis of hospitalized COVID-19 patients, we found no convincing evidence for the benefit of losartan versus control treatment, but a higher rate of hypotension adverse events with losartan.


Subject(s)
COVID-19 , Hypotension , Humans , Losartan/adverse effects , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Bayes Theorem , Hypotension/chemically induced
2.
Lancet Infect Dis ; 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20233475

ABSTRACT

BACKGROUND: Post-COVID-19 condition (also known as long COVID) is an emerging chronic illness potentially affecting millions of people. We aimed to evaluate whether outpatient COVID-19 treatment with metformin, ivermectin, or fluvoxamine soon after SARS-CoV-2 infection could reduce the risk of long COVID. METHODS: We conducted a decentralised, randomised, quadruple-blind, parallel-group, phase 3 trial (COVID-OUT) at six sites in the USA. We included adults aged 30-85 years with overweight or obesity who had COVID-19 symptoms for fewer than 7 days and a documented SARS-CoV-2 positive PCR or antigen test within 3 days before enrolment. Participants were randomly assigned via 2 × 3 parallel factorial randomisation (1:1:1:1:1:1) to receive metformin plus ivermectin, metformin plus fluvoxamine, metformin plus placebo, ivermectin plus placebo, fluvoxamine plus placebo, or placebo plus placebo. Participants, investigators, care providers, and outcomes assessors were masked to study group assignment. The primary outcome was severe COVID-19 by day 14, and those data have been published previously. Because the trial was delivered remotely nationwide, the a priori primary sample was a modified intention-to-treat sample, meaning that participants who did not receive any dose of study treatment were excluded. Long COVID diagnosis by a medical provider was a prespecified, long-term secondary outcome. This trial is complete and is registered with ClinicalTrials.gov, NCT04510194. FINDINGS: Between Dec 30, 2020, and Jan 28, 2022, 6602 people were assessed for eligibility and 1431 were enrolled and randomly assigned. Of 1323 participants who received a dose of study treatment and were included in the modified intention-to-treat population, 1126 consented for long-term follow-up and completed at least one survey after the assessment for long COVID at day 180 (564 received metformin and 562 received matched placebo; a subset of participants in the metformin vs placebo trial were also randomly assigned to receive ivermectin or fluvoxamine). 1074 (95%) of 1126 participants completed at least 9 months of follow-up. 632 (56·1%) of 1126 participants were female and 494 (43·9%) were male; 44 (7·0%) of 632 women were pregnant. The median age was 45 years (IQR 37-54) and median BMI was 29·8 kg/m2 (IQR 27·0-34·2). Overall, 93 (8·3%) of 1126 participants reported receipt of a long COVID diagnosis by day 300. The cumulative incidence of long COVID by day 300 was 6·3% (95% CI 4·2-8·2) in participants who received metformin and 10·4% (7·8-12·9) in those who received identical metformin placebo (hazard ratio [HR] 0·59, 95% CI 0·39-0·89; p=0·012). The metformin beneficial effect was consistent across prespecified subgroups. When metformin was started within 3 days of symptom onset, the HR was 0·37 (95% CI 0·15-0·95). There was no effect on cumulative incidence of long COVID with ivermectin (HR 0·99, 95% CI 0·59-1·64) or fluvoxamine (1·36, 0·78-2·34) compared with placebo. INTERPRETATION: Outpatient treatment with metformin reduced long COVID incidence by about 41%, with an absolute reduction of 4·1%, compared with placebo. Metformin has clinical benefits when used as outpatient treatment for COVID-19 and is globally available, low-cost, and safe. FUNDING: Parsemus Foundation; Rainwater Charitable Foundation; Fast Grants; UnitedHealth Group Foundation; National Institute of Diabetes, Digestive and Kidney Diseases; National Institutes of Health; and National Center for Advancing Translational Sciences.

3.
J Am Med Inform Assoc ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2325500

ABSTRACT

OBJECTIVE: Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared model without data sharing. However, individual health system data are heterogeneous. "Personalized" FL variations have been developed to counter data heterogeneity, but few have been evaluated using real-world healthcare data. The purpose of this study is to investigate the performance of a single-site versus a 3-client federated model using a previously described COVID-19 diagnostic model. Additionally, to investigate the effect of system heterogeneity, we evaluate the performance of 4 FL variations. MATERIALS AND METHODS: We leverage a FL healthcare collaborative including data from 5 international healthcare systems (US and Europe) encompassing 42 hospitals. We implemented a COVID-19 computer vision diagnosis system using the FedAvg algorithm implemented on Clara Train SDK 4.0. To study the effect of data heterogeneity, training data was pooled from 3 systems locally and federation was simulated. We compared a centralized/pooled model, versus FedAvg, and 3 personalized FL variations (FedProx, FedBN, FedAMP). RESULTS: We observed comparable model performance with respect to internal validation (local model: AUROC 0.94 vs FedAvg: 0.95, p = 0.5) and improved model generalizability with the FedAvg model (p < 0.05). When investigating the effects of model heterogeneity, we observed poor performance with FedAvg on internal validation as compared to personalized FL algorithms. FedAvg did have improved generalizability compared to personalized FL algorithms. On average, FedBN had the best rank performance on internal and external validation. CONCLUSION: FedAvg can significantly improve the generalization of the model compared to other personalization FL algorithms; however, at the cost of poor internal validity. Personalized FL may offer an opportunity to develop both internal and externally validated algorithms.

4.
PLoS One ; 18(4): e0283326, 2023.
Article in English | MEDLINE | ID: covidwho-2296864

ABSTRACT

IMPORTANCE: The SARS-CoV-2 pandemic has overwhelmed hospital capacity, prioritizing the need to understand factors associated with type of discharge disposition. OBJECTIVE: Characterization of disposition associated factors following SARS-CoV-2. DESIGN: Retrospective study of SARS-CoV-2 positive patients from March 7th, 2020, to May 4th, 2022, requiring hospitalization. SETTING: Midwest academic health-system. PARTICIPANTS: Patients above the age 18 years admitted with PCR + SARS-CoV-2. INTERVENTION: None. MAIN OUTCOMES: Discharge to home versus PAC (inpatient rehabilitation facility (IRF), skilled-nursing facility (SNF), long-term acute care (LTACH)), or died/hospice while hospitalized (DH). RESULTS: We identified 62,279 SARS-CoV-2 PCR+ patients; 6,248 required hospitalizations, of whom 4611(73.8%) were discharged home, 985 (15.8%) to PAC and 652 (10.4%) died in hospital (DH). Patients discharged to PAC had a higher median age (75.7 years, IQR: 65.6-85.1) compared to those discharged home (57.0 years, IQR: 38.2-69.9), and had longer mean length of stay (LOS) 14.7 days, SD: 14.0) compared to discharge home (5.8 days, SD: 5.9). Older age (RRR:1.04, 95% CI:1.041-1.055), and higher Elixhauser comorbidity index [EI] (RRR:1.19, 95% CI:1.168-1.218) were associated with higher rate of discharge to PAC versus home. Older age (RRR:1.069, 95% CI:1.060-1.077) and higher EI (RRR:1.09, 95% CI:1.071-1.126) were associated with more frequent DH versus home. Blacks, Asians, and Hispanics were less likely to be discharged to PAC (RRR, 0.64 CI 0.47-0.88), (RRR 0.48 CI 0.34-0.67) and (RRR 0.586 CI 0.352-0.975). Having alpha variant was associated with less frequent PAC discharge versus home (RRR 0.589 CI 0.444-780). The relative risks for DH were lower with a higher platelet count 0.998 (CI 0.99-0.99) and albumin levels 0.342 (CI 0.26-0.45), and higher with increased CRP (RRR 1.006 CI 1.004-1.007) and D-Dimer (RRR 1.070 CI 1.039-1.101). Increased albumin had lower risk to PAC discharge (RRR 0.630 CI 0.497-0.798. An increase in D-Dimer (RRR1.033 CI 1.002-1.064) and CRP (RRR1.002 CI1.001-1.004) was associated with higher risk of PAC discharge. A breakthrough (BT) infection was associated with lower likelihood of DH and PAC. CONCLUSION: Older age, higher EI, CRP and D-Dimer are associated with PAC and DH discharges following hospitalization with COVID-19 infection. BT infection reduces the likelihood of being discharged to PAC and DH.


Subject(s)
COVID-19 , Hospices , Humans , Aged , Aged, 80 and over , Adolescent , Patient Discharge , Retrospective Studies , COVID-19/epidemiology , SARS-CoV-2/genetics , Hospitalization , Albumins
6.
7.
J Neurosurg ; : 1-11, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-2231507

ABSTRACT

OBJECTIVE: The authors' objective was to investigate the impact of the global COVID-19 pandemic on hospital presentation and process of care for the treatment of traumatic brain injuries (TBIs). Improved understanding of these effects will inform sociopolitical and hospital policies in response to future pandemics. METHODS: The Michigan Trauma Quality Improvement Program (MTQIP) database, which contains data from 36 level I and II trauma centers in Michigan and Minnesota, was queried to identify patients who sustained TBI on the basis of head/neck Abbreviated Injury Scale (AIS) codes during the periods of March 13 through July 2 of 2017-2019 (pre-COVID-19 period) and March 13, 2020, through July 2, 2020 (COVID-19 period). Analyses were performed to detect differences in incidence, patient characteristics, injury severity, and outcomes. RESULTS: There was an 18% decrease in the rate of encounters with TBI in the first 8 weeks (March 13 through May 7), followed by a 16% increase during the last 8 weeks (May 8 through July 2), of our COVID-19 period compared with the pre-COVID-19 period. Cumulatively, there was no difference in the rates of encounters with TBI between the COVID-19 and pre-COVID-19 periods. Severity of TBI, as measured with maximum AIS score for the head/neck region and Glasgow Coma Scale score, was also similar between periods. During the COVID-19 period, a greater proportion of patients with TBI presented more than a day after sustaining their injuries (p = 0.046). COVID-19 was also associated with a doubling in the decubitus ulcer rate from 1.0% to 2.1% (p = 0.002) and change in the distribution of discharge status (p = 0.01). Multivariable analysis showed no differences in odds of death/hospice discharge, intensive care unit stay of at least a day, or need for a ventilator for at least a day between the COVID-19 and pre-COVID-19 periods. CONCLUSIONS: During the early months of the COVID-19 pandemic, the number of patients who presented with TBI was initially lower than in the years 2017-2019 prior to the pandemic. However, there was a subsequent increase in the rate of encounters with TBI, resulting in overall similar rates of TBI between March 13 through July 2 during the COVID-19 period and during the pre-COVID-19 period. The COVID-19 cohort was also associated with negative impacts on time to presentation, rate of decubitus ulcers, and discharge with supervision. Policies in response to future pandemics must consider the resources necessary to care for patients with TBI.

8.
Clin Infect Dis ; 2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2228297

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccination has decreasing protection from acquiring any infection with emergence of new variants; however, vaccination continues to protect against progression to severe COVID-19. The impact of vaccination status on symptoms over time is less clear. METHODS: Within a randomized trial on early outpatient COVID-19 therapy testing metformin, ivermectin, and/or fluvoxamine, participants recorded symptoms daily for 14 days. Participants were given a paper symptom diary allowing them to circle the severity of 14 symptoms as none (0), mild (1), moderate (2), or severe (3). This is a secondary analysis of clinical trial data on symptom severity over time using generalized estimating equations comparing those unvaccinated, SARS-CoV-2 vaccinated with primary vaccine series only, or vaccine-boosted. RESULTS: The parent clinical trial prospectively enrolled 1323 participants, of whom 1062 (80%) prospectively recorded some daily symptom data. Of these, 480 (45%) were unvaccinated, 530 (50%) were vaccinated with primary series only, and 52 (5%) vaccine-boosted. Overall symptom severity was least for the vaccine-boosted group and most severe for unvaccinated at baseline and over the 14 days (P < 0.001). Individual symptoms were least severe in the vaccine-boosted group including: cough, chills, fever, nausea, fatigue, myalgia, headache, and diarrhea, as well as smell and taste abnormalities. Results were consistent over delta and omicron variant time periods. CONCLUSIONS: SARS-CoV-2 vaccine-boosted participants had the least severe symptoms during COVID-19 which abated the quickest over time.

9.
Surg Infect (Larchmt) ; 23(10): 893-901, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2119184

ABSTRACT

Background: Since its emergence in early 2020, coronavirus disease 2019 (COVID-19)-associated pneumonia has caused a global strain on intensive care unit (ICU) resources with many intubated patients requiring prolonged ventilatory support. Outcomes for patients with COVID-19 who receive prolonged intubation (>21 days) and possible predictors of mortality in this group are not well established. Patients and Methods: Data were prospectively collected from adult patients with COVID-19 requiring mechanical ventilation from March 2020 through December 2021 across a system of 11 hospitals. The primary end point was in-hospital mortality. Factors associated with mortality were evaluated using univariable and multivariable logistic regression analyses. Results: Six hundred six patients were placed on mechanical ventilation for COVID-19 pneumonia during the study period, with in-hospital mortality of 40.3% (n = 244). Increased age (odds ratio [OR], 1.06; 95% confidence interval [CI], 1.03-1.09), increased creatinine (OR, 1.40; 95% CI, 1.08-1.82), and receiving corticosteroids (OR, 2.68; 95% CI, 1.20-5.98) were associated with mortality. Intubations lasting longer than 21 days (n = 140) had a lower in-hospital mortality of 25.7% (n = 36; p < 0.001). Increasing Elixhauser comorbidity index (OR, 1.12; 95% CI, 1.04-1.19) and receiving corticosteroids (OR, 1.92; 95% CI, 1.06-3.47) were associated with need for prolonged ventilation. In this group, increased age (OR, 1.06; 95% CI, 1.01-1.08) and non-English speaking (OR, 3.74; 95% CI, 1.13-12.3) were associated with mortality. Conclusions: In-hospital mortality in mechanically ventilated patients with COVID-19 pneumonia occurs primarily in the first 21 days after intubation, possibly related to the early active inflammatory process. In patients on prolonged mechanical ventilation, increased age and being non-English speaking were associated with mortality.

10.
J Am Heart Assoc ; 11(17): e026143, 2022 09 06.
Article in English | MEDLINE | ID: covidwho-2001999

ABSTRACT

Background Published randomized controlled trials are underpowered for binary clinical end points to assess the safety and efficacy of renin-angiotensin system inhibitors (RASi) in adults with COVID-19. We therefore performed a meta-analysis to assess the safety and efficacy of RASi in adults with COVID-19. Methods and Results MEDLINE, EMBASE, ClinicalTrials.gov, and the Cochrane Controlled Trial Register were searched for randomized controlled trials that randomly assigned patients with COVID-19 to RASi continuation/commencement versus no RASi therapy. The primary outcome was all-cause mortality at ≤30 days. A total of 14 randomized controlled trials met the inclusion criteria and enrolled 1838 participants (aged 59 years, 58% men, mean follow-up 26 days). Of the trials, 11 contributed data. We found no effect of RASi versus control on all-cause mortality (7.2% versus 7.5%; relative risk [RR], 0.95; [95% CI, 0.69-1.30]) either overall or in subgroups defined by COVID-19 severity or trial type. Network meta-analysis identified no difference between angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers. RASi users had a nonsignificant reduction in acute myocardial infarction (2.1% versus 3.6%; RR, 0.59; [95% CI, 0.33-1.06]), but increased risk of acute kidney injury (7.0% versus 3.6%; RR, 1.82; [95% CI, 1.05-3.16]), in trials that initiated and continued RASi. There was no increase in need for dialysis or differences in congestive cardiac failure, cerebrovascular events, venous thromboembolism, hospitalization, intensive care admission, inotropes, or mechanical ventilation. Conclusions This meta-analysis of randomized controlled trials evaluating angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers versus control in patients with COVID-19 found no difference in all-cause mortality, a borderline decrease in myocardial infarction, and an increased risk of acute kidney injury with RASi. Our findings provide strong evidence that RASi can be used safely in patients with COVID-19.


Subject(s)
Acute Kidney Injury , COVID-19 , Hypertension , Myocardial Infarction , Acute Kidney Injury/chemically induced , Adult , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Antihypertensive Agents/therapeutic use , Female , Humans , Male , Myocardial Infarction/drug therapy , Randomized Controlled Trials as Topic , Renin-Angiotensin System
11.
Open Forum Infect Dis ; 9(8): ofac389, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2001404

ABSTRACT

This analysis describes the prevalence of contraindications to nirmatrelvir/ritonavir among 66 007 patients with coronavirus disease 2019 in a large health care system. A possible contradiction was present in 9830 patients (14.8%), with the prevalence of contraindications increasing with higher acuity of illness.

12.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1999020

ABSTRACT

This analysis describes the prevalence of contraindications to nirmatrelvir/ritonavir among 66,007 patients with COVID-19 in a large health care system. A possible contradiction was present in 9,830 patients (14.8%), with the prevalence of contraindications increasing with higher acuity of illness.

13.
N Engl J Med ; 387(7): 599-610, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991731

ABSTRACT

BACKGROUND: Early treatment to prevent severe coronavirus disease 2019 (Covid-19) is an important component of the comprehensive response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. METHODS: In this phase 3, double-blind, randomized, placebo-controlled trial, we used a 2-by-3 factorial design to test the effectiveness of three repurposed drugs - metformin, ivermectin, and fluvoxamine - in preventing serious SARS-CoV-2 infection in nonhospitalized adults who had been enrolled within 3 days after a confirmed diagnosis of infection and less than 7 days after the onset of symptoms. The patients were between the ages of 30 and 85 years, and all had either overweight or obesity. The primary composite end point was hypoxemia (≤93% oxygen saturation on home oximetry), emergency department visit, hospitalization, or death. All analyses used controls who had undergone concurrent randomization and were adjusted for SARS-CoV-2 vaccination and receipt of other trial medications. RESULTS: A total of 1431 patients underwent randomization; of these patients, 1323 were included in the primary analysis. The median age of the patients was 46 years; 56% were female (6% of whom were pregnant), and 52% had been vaccinated. The adjusted odds ratio for a primary event was 0.84 (95% confidence interval [CI], 0.66 to 1.09; P = 0.19) with metformin, 1.05 (95% CI, 0.76 to 1.45; P = 0.78) with ivermectin, and 0.94 (95% CI, 0.66 to 1.36; P = 0.75) with fluvoxamine. In prespecified secondary analyses, the adjusted odds ratio for emergency department visit, hospitalization, or death was 0.58 (95% CI, 0.35 to 0.94) with metformin, 1.39 (95% CI, 0.72 to 2.69) with ivermectin, and 1.17 (95% CI, 0.57 to 2.40) with fluvoxamine. The adjusted odds ratio for hospitalization or death was 0.47 (95% CI, 0.20 to 1.11) with metformin, 0.73 (95% CI, 0.19 to 2.77) with ivermectin, and 1.11 (95% CI, 0.33 to 3.76) with fluvoxamine. CONCLUSIONS: None of the three medications that were evaluated prevented the occurrence of hypoxemia, an emergency department visit, hospitalization, or death associated with Covid-19. (Funded by the Parsemus Foundation and others; COVID-OUT ClinicalTrials.gov number, NCT04510194.).


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Fluvoxamine , Ivermectin , Metformin , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19 Vaccines , Double-Blind Method , Female , Fluvoxamine/therapeutic use , Humans , Hypoxia/etiology , Ivermectin/therapeutic use , Male , Metformin/therapeutic use , Middle Aged , Obesity/complications , Overweight/complications , Pregnancy , Pregnancy Complications, Infectious/drug therapy , SARS-CoV-2
14.
Radiol Artif Intell ; 4(4): e210217, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1968372

ABSTRACT

Purpose: To conduct a prospective observational study across 12 U.S. hospitals to evaluate real-time performance of an interpretable artificial intelligence (AI) model to detect COVID-19 on chest radiographs. Materials and Methods: A total of 95 363 chest radiographs were included in model training, external validation, and real-time validation. The model was deployed as a clinical decision support system, and performance was prospectively evaluated. There were 5335 total real-time predictions and a COVID-19 prevalence of 4.8% (258 of 5335). Model performance was assessed with use of receiver operating characteristic analysis, precision-recall curves, and F1 score. Logistic regression was used to evaluate the association of race and sex with AI model diagnostic accuracy. To compare model accuracy with the performance of board-certified radiologists, a third dataset of 1638 images was read independently by two radiologists. Results: Participants positive for COVID-19 had higher COVID-19 diagnostic scores than participants negative for COVID-19 (median, 0.1 [IQR, 0.0-0.8] vs 0.0 [IQR, 0.0-0.1], respectively; P < .001). Real-time model performance was unchanged over 19 weeks of implementation (area under the receiver operating characteristic curve, 0.70; 95% CI: 0.66, 0.73). Model sensitivity was higher in men than women (P = .01), whereas model specificity was higher in women (P = .001). Sensitivity was higher for Asian (P = .002) and Black (P = .046) participants compared with White participants. The COVID-19 AI diagnostic system had worse accuracy (63.5% correct) compared with radiologist predictions (radiologist 1 = 67.8% correct, radiologist 2 = 68.6% correct; McNemar P < .001 for both). Conclusion: AI-based tools have not yet reached full diagnostic potential for COVID-19 and underperform compared with radiologist prediction.Keywords: Diagnosis, Classification, Application Domain, Infection, Lung Supplemental material is available for this article.. © RSNA, 2022.

15.
Arch Phys Med Rehabil ; 103(10): 2001-2008, 2022 10.
Article in English | MEDLINE | ID: covidwho-1930726

ABSTRACT

OBJECTIVE: To examine the frequency of postacute sequelae of SARS-CoV-2 (PASC) and the factors associated with rehabilitation utilization in a large adult population with PASC. DESIGN: Retrospective study. SETTING: Midwest hospital health system. PARTICIPANTS: 19,792 patients with COVID-19 from March 10, 2020, to January 17, 2021. INTERVENTION: Not applicable. MAIN OUTCOME MEASURES: Descriptive analyses were conducted across the entire cohort along with an adult subgroup analysis. A logistic regression was performed to assess factors associated with PASC development and rehabilitation utilization. RESULTS: In an analysis of 19,792 patients, the frequency of PASC was 42.8% in the adult population. Patients with PASC compared with those without had a higher utilization of rehabilitation services (8.6% vs 3.8%, P<.001). Risk factors for rehabilitation utilization in patients with PASC included younger age (odds ratio [OR], 0.99; 95% confidence interval [CI], 0.98-1.00; P=.01). In addition to several comorbidities and demographics factors, risk factors for rehabilitation utilization solely in the inpatient population included male sex (OR, 1.24; 95% CI, 1.02-1.50; P=.03) with patients on angiotensin-converting-enzyme inhibitors or angiotensin-receptor blockers 3 months prior to COVID-19 infections having a decreased risk of needing rehabilitation (OR, 0.80; 95% CI, 0.64-0.99; P=.04). CONCLUSIONS: Patients with PASC had higher rehabilitation utilization. We identified several clinical and demographic factors associated with the development of PASC and rehabilitation utilization.


Subject(s)
COVID-19 , Adult , Angiotensin-Converting Enzyme Inhibitors , Angiotensins , COVID-19/epidemiology , Humans , Male , Retrospective Studies , SARS-CoV-2
16.
Open Forum Infect Dis ; 9(5): ofac066, 2022 May.
Article in English | MEDLINE | ID: covidwho-1784384

ABSTRACT

Background: Data conflict on whether vaccination decreases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load. The objective of this analysis was to compare baseline viral load and symptoms between vaccinated and unvaccinated adults enrolled in a randomized trial of outpatient coronavirus disease 2019 (COVID-19) treatment. Methods: Baseline data from the first 433 sequential participants enrolling into the COVID-OUT trial were analyzed. Adults aged 30-85 with a body mass index (BMI) ≥25 kg/m2 were eligible within 3 days of a positive SARS-CoV-2 test and <7 days of symptoms. Log10 polymerase chain reaction viral loads were normalized to human RNase P by vaccination status, by time from vaccination, and by symptoms. Results: Two hundred seventy-four participants with known vaccination status contributed optional nasal swabs for viral load measurement: median age, 46 years; median (interquartile range) BMI 31.2 (27.4-36.4) kg/m2. Overall, 159 (58%) were women, and 217 (80%) were White. The mean relative log10 viral load for those vaccinated <6 months from the date of enrollment was 0.11 (95% CI, -0.48 to 0.71), which was significantly lower than the unvaccinated group (P = .01). Those vaccinated ≥6 months before enrollment did not differ from the unvaccinated with respect to viral load (mean, 0.99; 95% CI, -0.41 to 2.40; P = .85). The vaccinated group had fewer moderate/severe symptoms of subjective fever, chills, myalgias, nausea, and diarrhea (all P < .05). Conclusions: These data suggest that vaccination within 6 months of infection is associated with a lower viral load, and vaccination was associated with a lower likelihood of having systemic symptoms.

17.
JAMA Netw Open ; 5(3): e222735, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1748801

ABSTRACT

Importance: SARS-CoV-2 viral entry may disrupt angiotensin II (AII) homeostasis, contributing to COVID-19 induced lung injury. AII type 1 receptor blockade mitigates lung injury in preclinical models, although data in humans with COVID-19 remain mixed. Objective: To test the efficacy of losartan to reduce lung injury in hospitalized patients with COVID-19. Design, Setting, and Participants: This blinded, placebo-controlled randomized clinical trial was conducted in 13 hospitals in the United States from April 2020 to February 2021. Hospitalized patients with COVID-19 and a respiratory sequential organ failure assessment score of at least 1 and not already using a renin-angiotensin-aldosterone system (RAAS) inhibitor were eligible for participation. Data were analyzed from April 19 to August 24, 2021. Interventions: Losartan 50 mg orally twice daily vs equivalent placebo for 10 days or until hospital discharge. Main Outcomes and Measures: The primary outcome was the imputed arterial partial pressure of oxygen to fraction of inspired oxygen (Pao2:Fio2) ratio at 7 days. Secondary outcomes included ordinal COVID-19 severity; days without supplemental o2, ventilation, or vasopressors; and mortality. Losartan pharmacokinetics and RAAS components (AII, angiotensin-[1-7] and angiotensin-converting enzymes 1 and 2)] were measured in a subgroup of participants. Results: A total of 205 participants (mean [SD] age, 55.2 [15.7] years; 123 [60.0%] men) were randomized, with 101 participants assigned to losartan and 104 participants assigned to placebo. Compared with placebo, losartan did not significantly affect Pao2:Fio2 ratio at 7 days (difference, -24.8 [95%, -55.6 to 6.1]; P = .12). Compared with placebo, losartan did not improve any secondary clinical outcomes and led to fewer vasopressor-free days than placebo (median [IQR], 9.4 [9.1-9.8] vasopressor-free days vs 8.7 [8.2-9.3] vasopressor-free days). Conclusions and Relevance: This randomized clinical trial found that initiation of orally administered losartan to hospitalized patients with COVID-19 and acute lung injury did not improve Pao2:Fio2 ratio at 7 days. These data may have implications for ongoing clinical trials. Trial Registration: ClinicalTrials.gov Identifier: NCT04312009.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , COVID-19 Drug Treatment , COVID-19/complications , Losartan/therapeutic use , Lung Injury/prevention & control , Lung Injury/virology , Adult , Aged , COVID-19/diagnosis , Double-Blind Method , Female , Hospitalization , Humans , Lung Injury/diagnosis , Male , Middle Aged , Organ Dysfunction Scores , Respiratory Function Tests , United States
18.
PLoS One ; 17(1): e0262193, 2022.
Article in English | MEDLINE | ID: covidwho-1606289

ABSTRACT

OBJECTIVE: To prospectively evaluate a logistic regression-based machine learning (ML) prognostic algorithm implemented in real-time as a clinical decision support (CDS) system for symptomatic persons under investigation (PUI) for Coronavirus disease 2019 (COVID-19) in the emergency department (ED). METHODS: We developed in a 12-hospital system a model using training and validation followed by a real-time assessment. The LASSO guided feature selection included demographics, comorbidities, home medications, vital signs. We constructed a logistic regression-based ML algorithm to predict "severe" COVID-19, defined as patients requiring intensive care unit (ICU) admission, invasive mechanical ventilation, or died in or out-of-hospital. Training data included 1,469 adult patients who tested positive for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) within 14 days of acute care. We performed: 1) temporal validation in 414 SARS-CoV-2 positive patients, 2) validation in a PUI set of 13,271 patients with symptomatic SARS-CoV-2 test during an acute care visit, and 3) real-time validation in 2,174 ED patients with PUI test or positive SARS-CoV-2 result. Subgroup analysis was conducted across race and gender to ensure equity in performance. RESULTS: The algorithm performed well on pre-implementation validations for predicting COVID-19 severity: 1) the temporal validation had an area under the receiver operating characteristic (AUROC) of 0.87 (95%-CI: 0.83, 0.91); 2) validation in the PUI population had an AUROC of 0.82 (95%-CI: 0.81, 0.83). The ED CDS system performed well in real-time with an AUROC of 0.85 (95%-CI, 0.83, 0.87). Zero patients in the lowest quintile developed "severe" COVID-19. Patients in the highest quintile developed "severe" COVID-19 in 33.2% of cases. The models performed without significant differences between genders and among race/ethnicities (all p-values > 0.05). CONCLUSION: A logistic regression model-based ML-enabled CDS can be developed, validated, and implemented with high performance across multiple hospitals while being equitable and maintaining performance in real-time validation.


Subject(s)
COVID-19/diagnosis , Decision Support Systems, Clinical , Logistic Models , Machine Learning , Triage/methods , COVID-19/physiopathology , Emergency Service, Hospital , Humans , ROC Curve , Severity of Illness Index
19.
PLoS One ; 16(3): e0248956, 2021.
Article in English | MEDLINE | ID: covidwho-1574916

ABSTRACT

PURPOSE: Heterogeneity has been observed in outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19). Identification of clinical phenotypes may facilitate tailored therapy and improve outcomes. The purpose of this study is to identify specific clinical phenotypes across COVID-19 patients and compare admission characteristics and outcomes. METHODS: This is a retrospective analysis of COVID-19 patients from March 7, 2020 to August 25, 2020 at 14 U.S. hospitals. Ensemble clustering was performed on 33 variables collected within 72 hours of admission. Principal component analysis was performed to visualize variable contributions to clustering. Multinomial regression models were fit to compare patient comorbidities across phenotypes. Multivariable models were fit to estimate associations between phenotype and in-hospital complications and clinical outcomes. RESULTS: The database included 1,022 hospitalized patients with COVID-19. Three clinical phenotypes were identified (I, II, III), with 236 [23.1%] patients in phenotype I, 613 [60%] patients in phenotype II, and 173 [16.9%] patients in phenotype III. Patients with respiratory comorbidities were most commonly phenotype III (p = 0.002), while patients with hematologic, renal, and cardiac (all p<0.001) comorbidities were most commonly phenotype I. Adjusted odds of respiratory, renal, hepatic, metabolic (all p<0.001), and hematological (p = 0.02) complications were highest for phenotype I. Phenotypes I and II were associated with 7.30-fold (HR:7.30, 95% CI:(3.11-17.17), p<0.001) and 2.57-fold (HR:2.57, 95% CI:(1.10-6.00), p = 0.03) increases in hazard of death relative to phenotype III. CONCLUSION: We identified three clinical COVID-19 phenotypes, reflecting patient populations with different comorbidities, complications, and clinical outcomes. Future research is needed to determine the utility of these phenotypes in clinical practice and trial design.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Phenotype , Aged , Comorbidity , Female , Humans , Male , Middle Aged , Retrospective Studies
20.
J Patient Saf ; 18(4): 287-294, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1440697

ABSTRACT

OBJECTIVES: The COVID-19 pandemic stressed hospital operations, requiring rapid innovations to address rise in demand and specialized COVID-19 services while maintaining access to hospital-based care and facilitating expertise. We aimed to describe a novel hospital system approach to managing the COVID-19 pandemic, including multihospital coordination capability and transfer of COVID-19 patients to a single, dedicated hospital. METHODS: We included patients who tested positive for SARS-CoV-2 by polymerase chain reaction admitted to a 12-hospital network including a dedicated COVID-19 hospital. Our primary outcome was adherence to local guidelines, including admission risk stratification, anticoagulation, and dexamethasone treatment assessed by differences-in-differences analysis after guideline dissemination. We evaluated outcomes and health care worker satisfaction. Finally, we assessed barriers to safe transfer including transfer across different electronic health record systems. RESULTS: During the study, the system admitted a total of 1209 patients. Of these, 56.3% underwent transfer, supported by a physician-led System Operations Center. Patients who were transferred were older (P = 0.001) and had similar risk-adjusted mortality rates. Guideline adherence after dissemination was higher among patients who underwent transfer: admission risk stratification (P < 0.001), anticoagulation (P < 0.001), and dexamethasone administration (P = 0.003). Transfer across electronic health record systems was a perceived barrier to safety and reduced quality. Providers positively viewed our transfer approach. CONCLUSIONS: With standardized communication, interhospital transfers can be a safe and effective method of cohorting COVID-19 patients, are well received by health care providers, and have the potential to improve care quality.


Subject(s)
COVID-19 , Anticoagulants/therapeutic use , COVID-19/epidemiology , Dexamethasone/therapeutic use , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL